

UG0802 EV720E00 Evaluation Board (EVB) User Guide

This document describes the evaluation board supported LM720E00&SM720E00 modules.

Rev. 1.2

Nov. 2023

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

© 2022 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Please Read Carefully:

Realtek Semiconductor Corp., (Realtek) reserves the right to make corrections, enhancements, improvements and other changes to its products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Reproduction of significant portions in Realtek data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Realtek is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions.

Buyers and others who are developing systems that incorporate Realtek products (collectively, "Customers") understand and agree that Customers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Customers have full and exclusive responsibility to assure the safety of Customers' applications and compliance of their applications (and of all Realtek products used in or for Customers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Customer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Customer agrees that prior to using or distributing any applications that include Realtek products, Customer will thoroughly test such applications and the functionality of such Realtek products as used in such applications.

Realtek's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation kits, (collectively, "Resources") are intended to assist designers who are developing applications that incorporate Realtek products; by downloading, accessing or using Realtek's Resources in any way, Customer (individually or, if Customer is acting on behalf of a company, Customer's company) agrees to use any particular Realtek Resources solely for this purpose and subject to the terms of this Notice.

Realtek's provision of Realtek Resources does not expand or otherwise alter Realtek's applicable published warranties or warranty disclaimers for Realtek's products, and no additional obligations or liabilities arise from Realtek providing such Realtek Resources. Realtek reserves the right to make corrections, enhancements, improvements and other changes to its Realtek Resources. Realtek has not conducted any testing other than that specifically described in the published documentation for a particular Realtek Resource.

Customer is authorized to use, copy and modify any individual Realtek Resource only in connection with the development of applications that include the Realtek product(s) identified in such Realtek Resource. No other license, express or implied, by estoppel or otherwise to any other Realtek intellectual property right, and no license to any technology or intellectual property right of Realtek or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Realtek products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of Realtek Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from Realtek under the patents or other Realtek's intellectual property.

Realtek's Resources are provided "as is" and with all faults. Realtek disclaims all other warranties or representations, express or implied, regarding resources or use thereof, including but not limited to accuracy or completeness, title, any epidemic failure warranty and any implied warranties of merchantability, fitness for a particular purpose, and non-infringement of any third party intellectual property rights.

Realtek shall not be liable for and shall not defend or indemnify Customer against any claim, including but not limited to any infringement claim that related to or is based on any combination of products even if described in Realtek Resources or otherwise. In no event shall Realtek be liable for any actual, direct, special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of Realtek's Resources or use thereof, and regardless of whether Realtek has been advised of the possibility of such damages. Realtek is not responsible for any failure to meet such industry standard requirements.

Where Realtek specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Customers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any Realtek products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death. Such equipment includes, without limitation, all medical devices identified by the U.S. FDA as Class III devices and equivalent classifications outside the U.S.

Customers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Customers' own risk. Customers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Customer will fully indemnify Realtek and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's

non-compliance with the terms and provisions of this Notice.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

Contents

C	onten	nts	4
1	Ove	/erview	5
	1.1	Introduction	5
	1.2	Features	
2	Qu	uick Start	6
	2.1	Power	6
	2.2	FLASH Download	
	2.3	Log	
	2.4	Functions	6
3	PCI	CB Layout	7
	3.1	Component Distribution	7
	3.1	1.1 Top Layer	7
	3.1	1.2 Bottom Layer	
	3.2	Main Parts	8
	3.2		
	3.2		
	3.2		
	3.2		
	3.2		
	3.2	2.6 USB Type-C	10
4	Bas	sic Usage	
	4.1	Power Supply	12
	4.2	Reset	
	4.3	Communication	12
	4.3	3.1 LOGUART	12
	4.3	3.2 SWD	
	4.4	Flash Download	13
5	Otl	her Functions and Instructions	14
	5.1	Wi-Fi	14
	5.2	Bluetooth	
	5.3	Cap Touch	
	5.4	User LED	14
	5.5	MIC	14
	5.6	GPIO	15
	5.7	Test Points	15
R	evisio	on History	17

***REALTEK Overview

1 Overview

1.1 Introduction

The EVB supported LM720E00 and SM720E00 module is designed to provide users with flexible function demonstration and usage evaluation. It builds the minimum system including power supply and USB-to-UART log/image download interface, and provides various functions such as Wi-Fi, Bluetooth, User LED, Cap Touch, Digital-MICs, GPIO, etc. Users can configure the functions freely by using the SDK and related tools provided by REALTEK.

1.2 Features

The EVB includes the following features:

- LM720E00 module SMT supported
- LM720E00 module vertical insertion assembly supported
- SM720E00 module SMT supported
- 5V DC power supply
- Buttons for chip reset and UART download
- USB-to-UART and USB Type-C interface supported
- User LED for red/green/blue colors supported
- Cap touch functions supported through FPC interface socket
- 2 Digital-MICs supported
- Wi-Fi 2.4G and Bluetooth supported from module
- GPIO PIN Header supported for function extension

2 Quick Start

2.1 Power

The EVB can be powered by connecting a USB cable between PC and board in USB Type-C socket, refer to section 3.2.6 for details of the interface.

2.2 FLASH Download

Before the EVB leaving the factory, REALTEK has downloaded a test image into the FLASH inside the chip on the module. If the user wants to download another image, please follow the instructions in the section 4.4.

2.3 Log

LOGUART is an important way for users to interact with the chip. Users can judge the working status of the code and perform online operations through the log transferred by the serial port. Users should refer to the section 4.3.1 for detailed instructions.

NOTE

USB-to-UART circuits and interface is designed on the EVB. Users just need to connect PC and EVB by a USB Type-C cable.

2.4 Functions

The EVB based on LM720E00&SM720E00 provides many functions for users to use freely. When users want to use a specific function, please follow the following steps:

- (1) If the function supported directly on board, just use the resource on board, like User LED, Digital Mic function etc.
- (2) If the function needs external sub-board to support, confirm the available pin for the function and hardware configuration of the EVB through reference design documents.
- (3) Connect EVB and external sub-board directly or through DuPont lines.

3 PCB Layout

3.1 Component Distribution

The EVB is a four-layer PCB board, with a size of 65mm*30mm, a chamfered arc radius of 3.5mm, and a positioning hole diameter of 3.2mm.

3.1.1 Top Layer

The top layer of the EVB is illustrated in Figure 3-1.

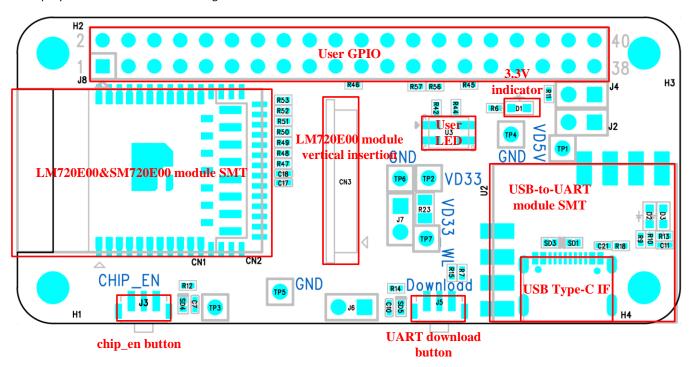


Figure 3-1 EV720E00 EVB - top layer

3.1.2 Bottom Layer

The bottom layer of the EVB is illustrated in Figure 3-2.

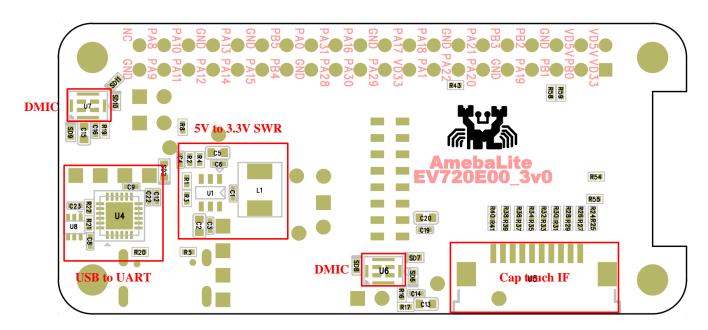


Figure 3-2 EV720E00 EVB - bottom layer

3.2 Main Parts

3.2.1 5V-to-3.3V DC-DC Converter

SILERGY's Synchronous Buck DC-DC converter chip (SY8121C1) is used as the main power source chip to supply 3.3V to the LM720E00 or SM720E00 module and other circuits on the EVB. The SY8121C1 is a high efficiency, synchronous stepdown DC/DC converter capable of delivering 2A load current. The SY8121C1 operates over a wide input voltage range from 4.2V to 18V. Please refer to the datasheet for more features and information.

3.2.2 USB-to-UART

The EVB co-lay designed the USB-to-UART circuit and USB-to-UART module. For customer use, the components of USB-to-UART circuit are on board by default. USB-to-UART module is mainly REALTEK internal used.

FT232RQ of FTDI is a USB to serial UART interface, supports signal chip USB to asynchronous serial data transfer.

Please refer to the datasheet for more features and information.

3.2.3 MIC

The EVB designs with 2 Digital MICs. The 3SM222FMT1KA microphone IC is integrated with specialized pre-amplification & analog-to-digital converter ASIC to provide high SNR output from a capacitive audio sensor.

Please refer to the datasheet for more features and information.

3.2.4 LM720E00&SM720E00 Module

LM720E00 module or SM720E00 module as shown in Figure 3-3 could be placed on the EVB. Figure 3-4 shows the module assembly on the EVB, CN1 for LM720E00 SMT position, CN2 for SM720E00 SMT position, and LM720E00 is supported the vertical insertion assembly on the EVB through CN3.

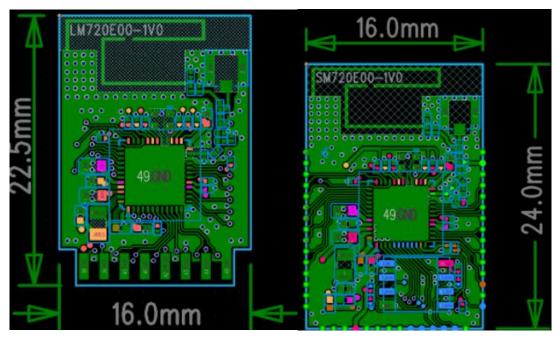


Figure 3-3 LM720E00 module and SM720E00 module

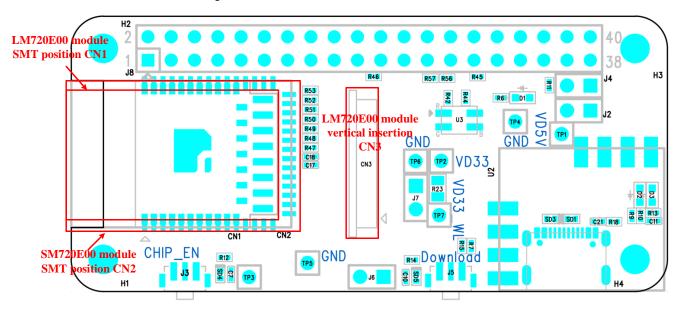


Figure 3-4 module assembly on EVB

For RF function, users could use Wi-Fi 2.4G and Bluetooth (BT) function. PCB antenna is designed on the module board. Users could use on-board antenna also could connect external antenna to module IPEX connector.

Please refer to the design documents of LM720E00 and SM720E00 for more details and information.

3.2.5 Pin Headers

Several Pin Headers are designed on the EVB for extended use. Refer to section 3.1 for component distributions of EVB. The pin multiplexing and description of each pin header is listed in Table 3-1.

Table 3-1 EV720E00 EVB - pin headers

Designator Pin number Symbol Description

2 1 SM LOG TX This Pin header NC and RSV for internal test

Designator	Pin number	Symbol	Description
J2	1	SM_LOG_TX	This Pin header NC and RSV for internal test
	2	PA_20	
J4	1	SM_LOG_RX	This Pin header NC and RSV for internal test
	2	DA 10	

J6	1	VD33	3.3V power supply
	2	VD33_D	3.3V power supply for Digital MIC
J7	1	VD33	3.3V power supply
	2	VD33_WL	3.3V power supply for module
J8	1	VD33	3.3V power supply
	2	VD5V	5V power supply
	3	PB0	Used as GPIO or other functions connected to PBO of chip directly
	4	VD5V	5V power supply
	5	PB1	Used as GPIO or other functions connected to PB1 of chip directly
	6	GND	Ground
	7	PA19	Used as GPIO or other functions connected to PA19 of chip directly through
	_	_	R58 0 ohm resistor(default NC)
	8	PB2	Used as GPIO or other functions connected to PB2 of chip directly
	9	GND	Ground
	10	PB3	Used as GPIO or other functions connected to PB3 of chip directly
	11	PA20	Used as GPIO or other functions connected to PA20 of chip directly through R59 0 ohm resistor(default NC)
	12	PA21	Used as GPIO or other functions connected to PA21 of chip directly
	13	PA22	Used as GPIO or other functions connected to PA22 of chip directly
	14	GND	Ground
	15	PA1	Used as GPIO or other functions connected to PA1 of chip directly
	16	PA18	Used as GPIO or other functions connected to PA18 of chip directly
	17	VD33	3.3V power supply
	18	PA17	Used as GPIO or other functions connected to PA17 of chip directly
	19	PA29	Used as GPIO or other functions connected to PA29 of chip directly
	20	GND	Ground
	21	PA30	Used as GPIO or other functions connected to PA30 of chip directly
	22	PA16	Used as GPIO or other functions connected to PA16 of chip directly
	23	PA28	Used as GPIO or other functions connected to PA28 of chip directly
	24	PA31	Used as GPIO or other functions connected to PA31 of chip directly
	25	GND	Ground
	26	PA0	Used as GPIO or other functions connected to PAO of chip directly
	27	PB4	Used as GPIO or other functions connected to PB4 of chip directly
	28	PB5	Used as GPIO or other functions connected to PB5of chip directly
	29	PA15	Used as GPIO or other functions connected to PA15 of chip directly
	30	GND	Ground
	31	PA14	Used as GPIO or other functions connected to PA14 of chip directly
	32	PA13	Used as GPIO or other functions connected to PA13 of chip directly
	33	PA12	Used as GPIO or other functions connected to PA12 of chip directly
	34	GND	Ground
	35	PA11	Used as GPIO or other functions connected to PA11 of chip directly
	36	PA10	Used as GPIO or other functions connected to PA10 of chip directly
	37	PA9	Used as GPIO or other functions connected to PA9 of chip directly
	38	PA8	Used as GPIO or other functions connected to PA8 of chip directly
	39	GND	Ground
	40	NC	NC

NOTE

- 1. Please refer to REALTEK PIN MUX specification for details and more information of the pin multiplex function.
- 2. PA19 and PA20 are used as LOGUART function default and are not connected to pin header J8.7 and J8.11.Other GPIOs are all connected to pin headers in Table 3-1.

3.2.6 USB Type-C

There is a standard USB Type-C socket on the EVB, which can be used as a power supply to power the EVB or as a communication interface when using the USB-to-UART function.

A NOTE

EV720E00 3V0 version can only support PC USB Type-A to EVB USB Type-C connection. Later version will improve the design to support both A-to-C and C-to-C connection.

4 Basic Usage

4.1 Power Supply

The EVB is 5V DC power supported, can be powered from USB Type-C interface socket by PC or power adaptor of rated power no less than 2W.

4.2 Reset

When the power supply is stable, the EVB can be reset by pressing and releasing the CHIP_EN button on the board, or powering the board off and then powering on. The CHIP_EN button on the EVB is J3. Press the J3 button that pulls low CHIP_EN signal. Release the J3 button that pulls high CHIP_EN signal. CHIP_EN is on HIGH state during normal operation.

4.3 Communication

4.3.1 LOGUART

The EVB can interact with PC through the USB-to-UART circuits on board. Users need to connect the EVB and PC through an USB Type-C cable. The default LOGUART function is distributed on PA19 (LOG_RX) and PA20 (LOG_TX).

In the Trace Tool provided by REALTEK, select the serial port according to the steps in Figure 4-1, configure the transmission baud rate and frame format, and open the serial port to interact with the EVB on the PC.

The default transmission baud rate of LOGUART is 1.5Mbps.

After that, the log window of the Trace Tool will display the data received/transmitted by PC and parse it into ASCII characters. Each line of log will display the time of receiving/transmitting this log.

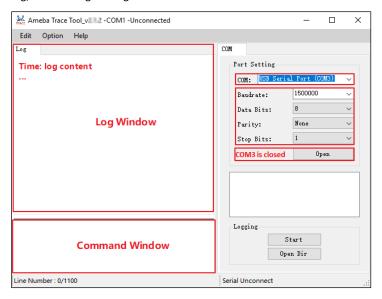


Figure 4-1 Trace Tool UI

4.3.2 SWD

The EVB supports 2-pin serial-wire debug (SWD) interface for users to access core integrated in the chip. Users can access KR4 core through KR_SWD interface, and can access both KR4 core and KM4 core through Share_SWD interface.

The KR_SWD function is distributed on PA21 (Data) and PA22 (CLK), Share_SWD function is distributed on PB0 (Data) and PB1 (CLK). The KR_SWD and Share_SWD interface are available on the Pin Header J8.

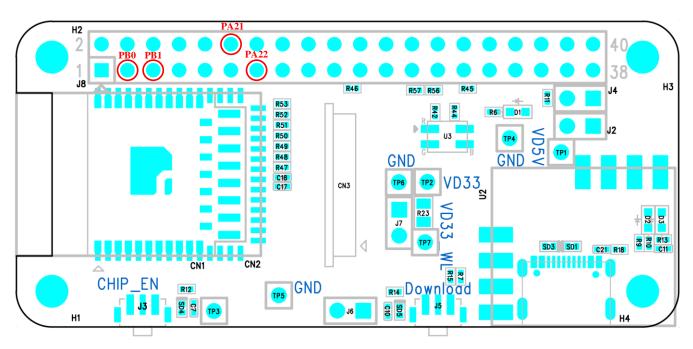


Figure 4-2 Location of SWD function on EVB

4.4 Flash Download

Users can download the image into FLASH through USB-to-UART function on the EVB.

The steps of downloading the image are below:

- (1) Connect the EVB to PC through the USB cable, power on the chip.
- (2) Keep pressing the UART download button, press and release the CHIP_EN button to enter into Flash download mode.
- (3) Select the corresponding serial port in the Image Tool provided by REALTEK.
- (4) Click Chip Select (in red) menu of Image Tool and select RTL8720E_FreeRTOS_NOR.rdev configuration file.
- (5) Set the transmission baud rate, and 1.5Mbps is recommended.
- (6) Select the storage directory of the compiled program and set the address of each image according to Figure 4-3.
- (7) Click the download button to start downloading the image.

After the download, the Image Tool will show whether the transmission of each image is successful. If the transmission is successful, reset the chip according to the method in section 4.2.

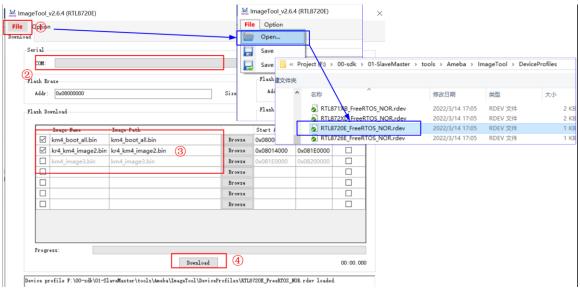


Figure 4-3 ImageTool UI

5 Other Functions and Instructions

5.1 Wi-Fi

The EVB supports 2.4G RF of Wi-Fi 802.11ax protocol. Please refer to the design documents of LM720E00 and SM720E00 for more detailed information.

5.2 Bluetooth

The EVB supports Bluetooth protocol 5.2. Please refer to the design documents of LM720E00 and SM720E00 for more detailed information.

5.3 Cap Touch

The EVB supports 9 channels of cap touch application. Users can connect cap touch sub-board through the FPC 10pin connector (U5) on the EVB. Please be noted that the FPC cable should be carefully inserted into the connector to avoid damage to the golden finger.

The PINs shown in the Figure 5-1 are used as GPIO by default. If users want to apply cap-touch function, please change the hardware configurations following below instructions (see Figure 3-1 and Figure 3-2 for locations of each components):

- R24, R26, R28, R30, R32, R34, R36, R38, R40 removed;
- R25, R27, R29, R31, R33, R35, R37, R39, R41 of 560Ω resistors placed on the board.

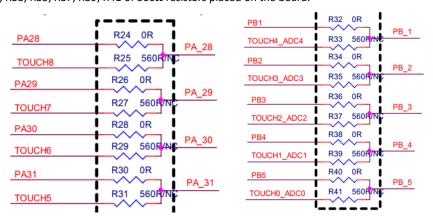


Figure 5-1 Hardware configuration of the cap touch

5.4 User LED

The EVB supports a 3-color LED (R/G/B) for users to use. The PINs shown in the Figure 5-2 are used as GPIO by default. If users want to apply user LED function, please change the hardware configurations following below instructions (see Figure 3-1 and Figure 3-2 for locations of each components):

R42, R43, R44 of 470Ω resistors placed on the board.

Figure 5-2 Hardware configuration of the User LED

5.5 MIC

The EVB supports 2 digital MICs. The PINs shown in the Figure 5-3 are used as GPIO by default. If users want to apply digital MIC function, please change the hardware configurations following below instructions (see Figure 3-1 and Figure 3-2 for locations of each components):

• R45 and R46 of 22Ω resistors placed on the board.

Figure 5-3 Hardware configuration of the Digital MIC

5.6 GPIO

There are multiple GPIOs on the EVB. Refer to section 3.2.5 Pin Headers for the function and description of each I/O. The PINs shown in the Figure 5-4 are used as GPIO by default. So users could apply GPIO function directly. If hardware configuration changed by other function application, please change the hardware configurations following below instructions (see Figure 3-1 and Figure 3-2 for locations of each components):

- R25, R27, R29, R31, R33, R35, R37, R39, R41, R42-R46 removed;
- R24, R26, R28, R30, R32, R34, R36, R38, R40, R47-R53 of 0Ω resistors placed on the board.
- **1** NOTI

When module with RTL8720EAM/RTL8710ECM is placed on the EVB, signal name PA8-PA14 corresponding to the actual connected pins are PA2-PA7 which are connected to an external flash. These GPIOs are not available on the pin header (J8) and the resistors of R47-R53 will be removed.

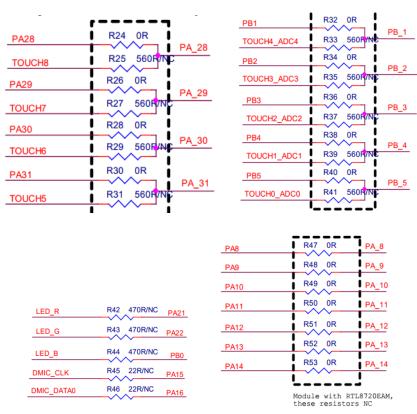


Figure 5-4 Hardware configurations of the GPIO

5.7 Test Points

Several test points are reserved on the EVB for debugging.

Table 5-1 EV720E00 EVB – test points

Designator	Pin number	Symbol	Description
TP1	1	VD5V	5V power test point
TP2	1	VD33	3.3V power test point
TP3	1	CHIP_EN	CHIP_EN signal test point
TP4	1	GND	Ground test point
TP5	1	GND	Ground test point

₩REALTEK

TP6	1	GND	Ground test point
TP7	1	VD33_WL	3.3V power for module test point

Revision History

Date	Version	Description	
2022-05-10	v1.0	Initial release	
2022-11-30	V1.1	Correct some mistakes	
2023-11-22	V1.2	Correct some mistakes	
		2. Add contents in 3.2.5	